လျှပ်စီး

လျှပ်ကူးပစ္စည်း (conductor) စသည်တို့အတွင်း ဓာတ်မသတ္တိဆောင်သော လျှပ်စစ်အမှုန်လေးများ (electrons) ရွေ့လျားစီးဆင်းခြင်းကို လျှပ်စီးစီးဆင်းသည်(current) ဟုခေါ်သည်။

လျှပ်စစ်သံလိုက်လှိုင်းများ

လျှပ်စီးကြောင်းဟုလည်း ခေါ်လေ့ရှိပြီး ဝတ္တုပစ္စည်းတစ်ခု၏ ကန့်လန့်ဖြတ်ဧရိယာ (CSA ) တစ်နေရာကို တစ်စက္ကန့်အတွင်း ဖြတ်သန်းသွားသော အီလက်ထရွန် တို့အားတိုင်းတာဖေါ်ပြခြင်းဖြင့် လျှပ်စစ်စီးဆင်းနှုန်းကို သတ်မှတ်သည်။

လျှပ်စစ်စီးဆင်းနှုန်း တိုင်းတာသော ယူနစ်များမှာ အမ်ပီယာ (Ampere ) နှင့် အမ်ဘီယာ (Ambere) တို့ဖြစ်ပြီး ၁ အမ်ဘီယာ သည် ၁၀ အမ်ပီယာ နှင့်ညီမျှသည်။

၁ အမ်ပီယာ၏ ပမာဏကို သတ်မှတ်ရာတွင် တွက်ချက်မှုလွယ်ကူစေရန်ယူနစ်တန်ဖိုးများညှိထားသောကြောင့် လျှပ်စီးကြောင်းခုခံမှု တစ်ယူနစ် (1 Ohm) ရှိသော ပစ္စည်းတွင် လျှပ်စစ်ပိုတင်ရှယ် ခြားနားခြင်း တစ်ယူနစ် (1 Volt) သက်ရောက်စဉ် လျှပ်စီးကြောင်း တစ်ယူနစ် (1 Ampere) စီးဆင်းသည်ဟုလည်း ဆိုနိုင်သည်။

ဦးတည်ရာဖက် လားရာတဖက်တည်းသို့ စီးဆင်းသော လျှပ်စီးမျိုးနှင့် ဆန့်ကျင်ဖက်လားရာနှစ်ခုသို့ အပြန်အလှန် အစုံအဆန်စီးသော လျှပ်စီးဟူ၍ လျှပ်စစ်စီးဆင်းပုံနှစ်မျိုးရှိသည်။

မည်သည့် လျှပ်စီးကြောင်းကြောင့်ဖြစ်စေ စီးဆင်းရာဝန်းကျင်တွင် သံလိုက်စက်ကွင်း ဖြစ်ပေါ်လေ့ရှိပြီး အပူစွမ်းအင် အလင်းစွမ်းအင်များလည်း ဖြစ်ထွန်းစေနိုင်သည်။

သဘာဝအလျောက် မိုးကြိုးထစ်ခြုံးခြင်း လျှပ်စီးပျိုးပြက်လင်းလက်ခြင်းတို့သည်လည်း အီလက်ထရွန်စီးဆင်းခြင်းပင်ဖြစ်ပြီး ရှေးအခါ(၁၇၅၂ ခုနှစ်)က Benjamin Franklin သည် စွန် နှင့် သော့ လေ့လာစမ်းသပ်မှု Kite key Experiment ဖြင့်ဖေါ်ထုတ်ပြခဲ့ဖူးသည်။

လျှပ်စီးကြောင်းတိုင်းတာခြင်း

လျှပ်စစ်စီးဆင်းခြင်းကြောင့် ဝန်းကျင်တွင် အလင်း။ အပူ။ ရေဒီယိုလှိုင်း၊ သံလိုက်စက်ကွင်း စသည့် စွမ်းအင်အမျိုးမျိုးပေါ်ထွက်သည်မှန်သော်လည်း အင်အားနည်းပါးသောလျှပ်စီးမှုကိုတိုင်းတာသိရှိရန်အတွက် သံလိုက်စက်ကွင်းဖြစ်ထွန်းမှုကို အဓိကထား၍ကြံဆတိုင်းတာခဲ့ကြသည်။ (တည်ငြိမ်လျှပ်စစ်ဓာတ်ကို စူးစမ်းလေ့လာစဉ်အချိန်က gold leaf electroscope၏ ပါးလွှာသော ရွှေရွက်ပြားနှစ်ခု စုခြင်း/ကားခြင်း အနေအထားကို လေ့လာခဲ့ကြရသည်။)

တိုင်းတာပုံအခြေခံသဘော

သံလိုက်အိမ်မြှောင် တစ်ခုကို တောင်မြောက်အနေအထားပြလျက်တည်ငြိမ်နေစေပြီး အိမ်မြှောင်ခွက်အပေါ်မှရစ်ပတ်ထားသော နန်းကြိုးခွေအတွင်း လျှပ်စစ်စီးဆင်းစေခြင်းဖြင့် သံလိုက်အိမ်မြှောင်ညွှန်ပြမှုသည် ယိမ်းယိုင်နေရာလွဲသွားလေသည်။ အိမ်မြှောင်ညွှန်ပြမှုသည် မူလတောင်မြောက်ညွှန်ပြနေရာမှ ထောင့်ချိုးတစ်ခုသွေဖီသွားခြင်းကိုတိုင်းတာတွက်ချက်ပြီး လျှပ်စီးပမာဏကိုသိကြသည်။ သွေဖီရာဖက်ကိုကြည့်ပြီး လျှပ်စီးလားရာကိုလည်း သိနိုင်သည်။ ထိုသို့တိုင်းတာသောကရိယာကို Tangent Galvanometer ဟုခေါ်သည်။ ယင်းအခြေခံကို တိုးချဲ့ပြုပြင်လာရာမှ ကွိုင်ရွေ့လျားသော Moving Coil Meters

မီတာများပေါ်ပေါက်လာသည်။

အင်အားကြီးသောလျှပ်စီးကြောင်းများကို တိုက်ရိုက်တိုင်းတာလေ့မရှိပဲ အေစီဓာတ်အားစနစ်တွင် စီတီ ခေါ် Current Transformer တို့မှတဆင့်ခံတိုင်းတာကြသည်။ ဒီစီဓာတ်အားစနစ်တွင် လမ်းကြောင်းခွဲဖြာစနစ် Shunt circuit တည်ဆောက်တိုင်းတာကြသည်။ စီတီမှရရှိသော အချိုးကြလျှပ်စီးငယ်ကို Moving Coil Meters များသုံး၍ တိုင်းတာနည်းအား ယနေ့တိုင် ကျယ်ပြန့်စွာ အသုံးချလျှက်ရှိပြီး လျှပ်စီးကြောင်း ချဲ့ထွင်တိုင်းတာ ကရိယာများ Current transducer ဖြင့် တိုင်းတာဖတ်ယူသည်တို့လည်းရှိသည်။

လျှပ်စီးကြောင့်ဖြစ်ပေါ်သောဓါတုဗေဒအကျိုး

လျှပ်လိုက်ရည်တစ်ခုအတွင်း လျှပ်စစ်ဓာတ်အားဖြတ်သန်းစီးဆင်းခြင်းဖြင့် အိုင်ယွန်ပြိုကွဲခြင်းများဖြစ်ပေါ်နိုင်ပြီး ရွှေရည်စိမ်ခြင်း (ရွှေရောင်တင်ပေးခြင်း) စသောအလုပ်များပြုလုပ်နိုင်သည်။

လျှပ်စီးကြောင့် ဖြစ်ပေါ်သော ရူပဗေဒ အကျိုး

လျှပ်စီးကြောင်းကြောင့် အပူဖြစ်ပေါ်မှု အလင်းဖြစ်ပေါ်မှုတို့ကို အမျိုးမျိုး အသုံးချကြသည်ကို ဝန်းကျင်တွင် လွယ်ကူစွာ တွေ့မြင်နိုင်သည်။ သံလိုက်စွမ်းအင် ဖြစ်ပေါ်စေမှုမှ စက်မှုစွမ်းအင်များ ထုတ်ယူပြီး အမျိုးမျိုး အသုံးချသည် လည်းရှိသည်။ ရေဒီယိုလှိုင်း ဖြစ်ထွန်းစေမှု ကြောင့်လည်း ဆက်သွယ်ရေးကရိယာများ အဖြစ် အသုံးချကြသည်။

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.