ယူရေနီယမ်

ယူရေနီယမ်သည် နျူကလီးယား အစီအစဉ် များအတွက် အခြေခံကုန်ပစ္စည်း ဖြစ်သည်။ ယူရေနီယမ်အား ဟင်းလင်းပွင့် မိုင်းတွင်းနှင့် မြေအောက်မိုင်းတွင်းများမှ တူးဖော်ရရှိသည်။ ယူရေနီယမ်ကို တကမ္ဘာလုံးမှာ သဘာဝအတိုင်း တွေ့ရသော်လည်း စုစည်းနေသော သတ္တုရိုင်းသိုက်များမှာ နည်းပါးစွာ တွေ့ရသည်။ မာကျောသိပ်သည်းပြီး ပုံသွင်းရလွယ်ကူသော ငွေဖြူရောင်ရှိသည့် ရေဒီယိုသတ္တိကြွ သတ္တု တစ်မျိုးဖြစ်သည်။ ၎င်း သတ္တုတွင် မြင့်မားသော သိပ်သည်းမှု ရှိပြီး ကောင်းမွန်စွာ သန့်စင် လိုက်သောအခါ ရေအေးနှင့် ဓာတ်ပြုနိုင်သည်။ လေထုထဲတွင် ၎င်း ကို ယူရေနီယမ်အောက်ဆိုဒ်ဖြင့် ဖုံးအုပ်ထားသောကြောင့် လျှင်မြန်စွာ အညှိတက်နိုင်သည်။ U သည် ရေနွေးငွေ့ နှင့် အက်ဆစ်ပျော်ရည် များကို ဆန့်ကျင်တိုက်ခိုက်သည်။ ယူရေနီယမ် ကို အစိုင်အခဲ အခြေအနေ နှင့် အခြား သတ္တုများဖြင့် ပေါင်းစပ်ထားသော ဒြပ်ပေါင်းအဖြစ် တွေ့ရှိနိုင်သည်။ ယူရေနီယမ် အက်တမ်အချို့ chain reaction အဖြစ် ကွဲသည့်အခါ စွမ်းအင်ထွက်လာသည်။ ၎င်းကို နျူကလီးယားကွဲခြင်းဟုခေါ်သည်။ နျူကလီးယားဓာတ်အားပေးစက်ရုံမှာ fissionက နှေးကွေးစွာသာဖြစ်ပြီး နျူကလီးယားလက်နက်များတွင် အလွန်လျင်မြန်စွာ ဖြစ်ပွားသည်။ ကိစ္စရပ် နှစ်ခုစလုံးမှာ fission ကို အထူးဂရုစိုက်၍ ထိန်းချုပ်ထားရမည်။ ယူရေနီယမ်၂၃၅ သို့မဟုတ် ပလူတိုနီယမ် ၂၃၉ ကို သုံးသည် အခါ နျူကလီးယား fission အကောင်းဆုံး လုပ်ဆောင်သည်။ ယူ-၂၃၅ အက်တမ်ခွဲသည် အခါ နျူထရွန် နှစ်ခုမှ သုံးခု ထွက်လာသည်။ နောက်ထပ် ယူ-၂၃၅ အက်တမ်များ ထပ်ပြီး စိုက်မိသည်။ နျူထရွန်များ ဆပွားထပ်၍ ထွက်ရှိလာသည်။ ဆင့်ကဲ chain reaction ဖြစ်လာသည်။ ယူ-၂၃၅ အက်တမ်များ လုံလောက်စွာ ရှိမှ တည်မြဲသော chain reaction ဖြစ်သည်။ ထိုကဲ့သို့ ဖြစ်စေမည့် ဒြပ်ပမာဏကို critical mass ဟုခေါ်သည်။ သဘာဝအတိုင်း တွေ့ရသည့် အက်တမ် တစ်ထောင်တိုင်းမှာ ခုနစ်ခုကသာ ယူ-၂၃၅ ဖြစ်ပြီး ကျန်သည့် ၉၉၃ လုံးက ယူ-၂၃၈ ဖြစ်သည်။

ယူရေနီယမ်,  92U
ယေဘုယျ ဂုဏ်သတ္တိများ
အမည်၊ သင်္ကေတယူရေနီယမ်, U
အသံထွက်/jʊˈrniəm/
ew-RAY-nee-əm
အဆင်းsilvery gray metallic; corrodes to a spalling black oxide coat in air
ဒြပ်စင်အလှည့်ကျဇယားရှိ ယူရေနီယမ်
Nd

U

(Uqh)
ပရိုတက်တီနီယမ်ယူရေနီယမ်နပ်ကျူနီယမ်
အက်တမ် အမှတ်စဉ် (Z)92
အုပ်စုဘလော့group n/a, f-block
ဒြပ်စင်အလှည့်ကျဇယားperiod 7
ဒြပ်စင် ကဏ္ဍ  actinide
စံ အက်တောမစ် အလေးချိန် (±) (Ar)238.02891(3)[1]
အီလက်ထရွန် ပြုပြင်မှု[Rn] 5f3 6d1 7s2
အခွံတစ်ခုလျင် အီလက်ထရွန်ပါဝင်မှု2, 8, 18, 32, 21, 9, 2
ရုပ်ပိုင်းဆိုင်ရာ ဂုဏ်သတ္တိများ
ဖေ့စ်အစိုင်အခဲ
အရည်ပျော်မှတ်1405.3 K (1132.2 °C, 2070 °F)
အရည်ဆူမှတ်4404 K (4131 °C, 7468 °F)
သိပ်သည်းမှု (အခန်းအပူချိန်)19.1 g/cm3
17.3 g/cm3
ဖျူးရှင်းအပူ9.14 kJ/mol
အငွေ့ပျံခြင်း အပူ417.1 kJ/mol
မိုလာ အပူအင်အား27.665 J/(mol·K)
ငွေ့ရည်ဖိအား
P (Pa) 1 10 100 1 k 10 k 100 k
at T (K) 2325 2564 2859 3234 3727 4402
အက်တောမစ် ဂုဏ်အင်များ
အောက်ဆိုဒ်ဒေးရှင်း အခြေနေ6, 5, 4, 3,[2] 2, 1 (a weakly basic oxide)
အီလက်ထရွန် ဆန့်ကျင်ဘက်ဓာတ်Pauling scale: 1.38
အိုင်ယွန်းပြုခြင်းစွမ်းအင်1st: 597.6 kJ/mol
2nd: 1420 kJ/mol
အက်တောမစ် အချင်းဝက်empirical: 156 pm
ကိုဗေးလန့်အချင်းဝက်196±7 pm
ဗန်ဒါဝေါ့စ် အချင်းဝက်186 pm
Miscellanea
ပုံဆောင်ခဲ ဖွဲ့စည်းပုံ orthorhombic
အသံ၏အမြန်နှုန်း 3155 m/s (at 20 °C)
အပူ ပြန့်ကားမှု13.9 µm/(m·K) (at 25 °C)
အပူစီးကူးမှု27.5 W/(m·K)
လျှပ်စစ် ခုခံမှု0.280 µΩ·m (at 0 °C)
သံလိုက်ဓာတ်paramagnetism
Young's modulus208 GPa
Shear modulus111 GPa
Bulk modulus100 GPa
ပိုင်ဆွန် အချိုး0.23
Vickers hardness1960–2500 MPa
Brinell hardness2350–3850 MPa
CAS Number7440-61-1
သမိုင်းကြောင်း
အမည်တပ်ခြင်းafter planet Uranus, itself named after Greek god of the sky Uranus
ရှာဖွေတွေ့ရှိမှုMartin Heinrich Klaproth (1789)
ပထမဆုံး ခွဲထုတ်မှုEugène-Melchior Péligot (1841)
Most stable isotopes of ယူရေနီယမ်
iso NA သက်တမ်းဝက် DM DE (MeV) DP
232U syn 68.9 y SF
α 5.414 228Th
233U trace 1.592×105 y SF 197.93[3]
α 4.909 229Th
234U 0.005% 2.455×105 y SF 197.78
α 4.859 230Th
235U 0.720% 7.04×108 y SF 202.48
α 4.679 231Th
236U trace 2.342×107 y SF 201.82
α 4.572 232Th
238U 99.274% 4.468×109 y α 4.270 234Th
SF 205.87
ββ 238Pu

အသွင်ပြောင်းခြင်း

ထုတ်ယူရရှိတဲ့ ယူရေနီယမ်သတ္တုရိုင်းကို အမှုန့်ခြေတယ်။ နောက်ဓာတုနည်းနဲ့ သန့်စင်ပြီး'အဝါရောင်ကိတ်'လို့ခေါ်တဲ့ အရာ လုပ်ယူတယ်။ အဝါရောင်ရှိပြီးယူရေနီယမ် ၆ဝ မှ ၇ဝ ရာခိုင်နှုန်းရှိကာ ရေဒီယိုသတ္တိကြွသည်။ ယူ- ၂၃၅ အက်တမ်ပမာဏများပြားအောင် လုပ်ယူခြင်းကို enrichment လို့ ခေါ်ပါတယ်။ ဒီလိုလုပ်ဖို့ yellow cake ကို နိုက်ထရစ် အက်ဆစ်နဲ့ဖျော်၊ ဓာတုနည်းနဲ့စီရင်ပြီး ယူရေနီယမ် ဟက်ဆာဖလူအိုရိုက် ဖြစ်အောင်ပြောင်းတယ်။ ၎င်းဟာ ဓာတ်ပြုလွယ်ပြီး စားတတ်လို့ သတိနဲ့ကိုင်တွယ်ရပါတယ်။

ပြည့်ဝစေခြင်း

နျူကလီးယားဓာတ်ပေါင်းဖိုမှာသုံးဖို့ ယူရေနီယမ် -၂၃၅ နှစ်မှ သုံးရာခိုင်နှုန်းအထိ enrichလုပ်ယူရသည်။ လက်နက်အဆင့် ယူရေနီယမ်မှာဆိုရင် ယူ-၂၃၅ ၉ဝရာခိုင်နှုန်းအထိပါသည်။ အသုံးများတဲ့နည်းက ဆလင်ဒါထဲမှာ ယူရေနီယမ်ဖလူအိုရိုက် ဓာတ်ငွေ့ကို ထည့်၍လှည့်ပြီး ဗဟိုခွာအားကို သုံးခြင်းပါပဲ။ အနည်းငယ် ပိုလေးတဲ့ ယူ-၂၃၈ တွေကို ပိုပေါ့တဲ့ ယူ-၂၃၅ မှ သီးခြားကွဲထွက်သွားစေသည်။ ယူ-၂၃၈ ကို ဖယ်ရှားပြီး ဗဟိုနားမှာ ယူ-၂၃၅ ကို စုယူသည်။ ဒီနည်းဖြင့် ထပ်ခါထပ်ခါ လုပ်သည်။ ယူ- ၂၃၅ ဖယ်ရှားပြီး အဓိကအားဖြင့် ယူ-၂၃၈ သာ ကျန်တဲ့ အရာကို depleted uranium လို့ခေါ်သည်။ လေးလံပြီး ရေဒီယိုသတ္တိကြွမှု အနည်းငယ်ရှိသည်။ သံချပ်ကာဖောက် ကျည်ဖူးတွေ မှာသုံးသည်။ အခြား enrichmentအလုပ်တဲ့နည်းကတော့ diffusionလို့ ခေါ်သည်။

သဘာဝတွင်တွေ့ရှိမှုအခြေအနေ

hola U သည် ရေဒီယို သတ္တိကြွသော်လည်း သီးခြားဖြစ်တည်မှု မရှိပဲ ပတ်ဝန်းကျင် တစ်လျှောက်လုံးတွင် ကျယ်ပျံ့စွာ ပြန့်နှံ့လျက် ရှိသည်။ထို့ကြောင့် U ကိုမတွေ့ရှိခြင်းမှာ မဖြစ်နိုင်ပေ။ ပင်ကိုအားဖြင့် U ကို ပတ်ဝန်းကျင်တွင်ရှိသော ကျောက်တုံးများ၊ အပေါ်ယံမြေဆီလွှာ၊ လေ နှင့် ရေ ထဲတွင် အလွန်သေးငယ်သော ပမာဏ အနေဖြင့် တွေ့ရှိနိုင်သည်။ လူသားများသည် ယူရေနီယမ်သတ္တု နှင့် ဒြပ်ပေါင်းများကို ပေါင်းစပ်ခြင်းမှာ မိုင်းတွင်း ဖောက်ခွဲခြင်းများတွင် အသုံးပြုရန် ဖြစ်သည်။ လေထဲတွင်ပါဝင်မှုသည် အလွန် နည်းပါးသည်။အခြားနေရာ၌ ပါဝင်မှု သည် လေထဲတွင် ပါဝင်မှု ထက် ပိုမြင့်မားသည်။ U သည် ရေထဲတွင် ပျော်ဝင်မှု အားကောင်းရာ ကျောက်တုံးများ နှင့် မြေဆီလွှာများ မှ ရေထဲသို့ ပျော်ဝင်ရောက်ရှိလာသော U ကို ရရှိနိုင်သည်။ အချို့ U သည် ရေထဲတွင် မရွေ့လျားပဲ တည်ရှိနေသောကြောင့် ထိုရေ၏ မျက်နှာပြင်ကို နောက်ကျိစေနိုင်သည်။ အလွန်သေးငယ်သော U အစိတ်အပိုင်းလေးတစ်ခုသာ လေထဲမှ ရေထဲသို့ ရောက်ရှိနိုင်သည်။ ယေဘုယျအားဖြင့် သောက်သုံးရေထဲတွင် ပါဝင်သော U ပမာဏသည် အလွန် နည်းပါးသည်။ မြေဆီလွှာထဲတွင် U ပါဝင်မှုကို ပြောင်းလဲ၍ တွေ့ရှိရခြင်းသည် အလွန် နည်းပါးသည်။ လူသားများသည် U ကို မြေဆီလွှာဆီသို့ ပေါင်းစပ် ဖြတ်ကျော် စေခြင်းမှာ စက်မှုလုပ်ငန်းများအတွက် ဖြစ်သည်။ adios

ကျန်းမာရေးဆိုင်ရာသက်ရောက်မှုများ

လူသားများသည် အစားအစာ၊ လေ၊ ရေ နှင့်မြေဆီလွှာ တို့မှ U ပမာဏ အမြောက်အများ ကို အစဉ်အမြဲ ထိတွေ့နေကြရသည်။ ထိုကဲ့သို့ U သည် သဘာဝရှိ အရာဝတ္ထုများတွင် ပါဝင် နေကြသည်။ အသီးအရွက် အမြစ်များ ကဲ့သ်ို့သော အစားအစာများ၊ ရေလဲတွင်ပါဝင်သော ပမာဏ အနည်းငယ် နှင့် အသက်ရှုလိုက်တိုင်း လေနှင့်အတူ ပါလာသော အနည်းငယ်သော U သက်ရောက်မှု ကို ၎င်းတို့မှ ကျွန်ုပ်တို့ရရှိကြသည်။ ပင်လယ်အစားအစာများတွင် U ပါဝင်မှုသည် များသောအားဖြင့် နည်းပါးသောကြောင့် လုံခြုံမှုကို မထိခိုက်နိုင်ပေ။ အန္တရာယ်ရှိသော ပစ္စည်းများ စွန့်ထုတ်သည့်ဆိုက်များ အနီးတွင်နေထိုင်သောလူထု၊ မိုင်းတွင်းများ အနီးတွင်နေထိုင်သော လူထု၊ ဖော့စဖိတ် စက်မှုလုပ်ငန်းများတွင် အလုပ်လုပ်သော လူထု၊ ညစ်ညမ်းမှုရှိသော မြေဆီလွှာများမှ ကြီးထွားလာသော ကောက်ပဲသီးနှံများကိုစားသောက်သောလူထု (သို့မဟုတ်) U စွန့်ထုတ်ပစ္စည်းများ ပါဝင်သော ရေကိုသောက်သုံးသောလူထု သည် အခြားသောလူထု ထက်ပ်ိုပြီး U ၏ သက်ရောက်မှု ကိုခံရမည် ဖြစ်သည်။ U အရောင်တင်မှုသည် အောင်မြင်ခဲ့ပြီးဖြစ်သော်လည်း အချို့သော အနုပညာရှင်များသည် ၎င်း ကို ဖန်ထည်၊ မှန်ထည် လုပ်ငန်းများအတွက် ပိုမိုကောင်းမွန်စေရန် အသုံးပြုကြသည်။ U သည် ရေဒီယိုသတ္တိကြွသော ပစ္စည်းဖြစ်သောကြောင့် ကျန်းမားရေးအကျိုးသက်ရောက်မှုများ ဖြစ်ပေါ်နိုင်သည်။ သိပ္ပံပညာရှင်များသည် U ၏ ရေဒီယိုသက်ရောက်မှုများကို မထိရောက်စေရန် ကာကွယ်ကြသည်။U ပမာဏအများအပြားမှ ဓာတုသက်ရောက်မှုများ ဖြစ်ပေါ်နိုင်ပြီး ၎င်းသက်ရောက်မှုများသည် ကျောက်ကပ်ကို ထိခိုက်စေနိုင်သည်။ U ၏ ရေဒီယိုသတ္တိကြွယိုယွင်းမှုသည် အချိန်ကာလအတော်ကြာဖြစ်ပေါ်နေသောကြောင့် အကာအကွယ်မဲ့ အသုံးပြုသော လူသားများအတွက် ကင်ဆာဆဲလ်များကို တိုးပွားစေနိုင်သည်။ ပြည့်၀သော U ကို အကာအကွယ်မဲ့ ကိုင်တွယ်အသုံးပြုသော လူသည် အခြားသူထက်ပိုပြီး ကင်ဆာရောဂါ ဖြစ်ပေါ်ရန် အခွင့်အလမ်းပိုများသည်။

ပတ်ဝန်းကျင်အပေါ်သက်ရောက်မှုအခြေအနေ

U သည်ရေဒီယိုသတ္တိကြွ အရာဝတ္တုဖြစ်ပြီး အလွန်ဓာတ်ပြုနိုင်သည်။ထိုအခြေအနေကြောင့် ၎င်းကို ပတ်ဝန်းကျင်တွင် ဒြပ်စင်ပုံစံ အနေဖြင့်မတွေ့ရှိနိုင်ပေ။အခြားဒြပ်စင်နှင့်ဓာတ်ပြုမှု အတောအတွင်း U ဒြပ်ပေါင်းသည် အဓိကကျပြီး အရာဝတ္ထုများသည် ရေထဲတွင် ပျော်ဝင်တိုးပွားနိုင်သည်။U ဒြပ်ပေါင်းပျော်ရည်ကို ပတ်ဝန်းကျင်တွင် အဆိပ်ရှိပြီး ရွေ့လျားနိုင်သော ပျော်ရည်အဖြစ် သတ်မှတ်သည်။ U သည် ကိုယ်တိုင်အနေဖြင့် အန္တရာယ်မရှိသော်လည်း ၎င်းတို့၏ ယိုယွင်းထွက်ကုန်များမှ ခြိမ်းခြောက်မှုများ ပြုလုပ်နိုင်ပြီး အထူးသဖြင့် ရေဒီယိုသတ္တိကြွဓာတ်ငွေ့များကို မြေအောက်ခန်းကဲ့သို့ ကန့်သတ်နယ်မြေများတွင် တည်ဆောက်နိုင်သည်။ U သည် လေထဲတွင် ဖုန်မှုန့်အနေဖြင့် တည်ရှိပြီး ရေမျက်နှာပြင်၊ အပင်များ နှင့် မြေဆီလွှာ ပေါ်သို့ ကျရောက်အခြေချနိုင်သည်။ ထို့ပြင် ရေထဲတွင် အနည်အနှစ် အနေဖြင့် နစ်မြုပ်နိုင်သည့်အပြင် အနိမ့်ဆုံး မြေဆီလွှာမျက်နှာပြင်သို့ ရောက်ရှိနိုင်ပြီး ထိုနေရာတွင် ၎င်းတို့သည် U နှင့် ရောနှောနိုင်သည်။ ရေထဲတွင် ပါဝင်သော U ပမာဏအနည်းငယ်သည် အန္တရာယ်ကင်းစွာ သောက်သုံးနိုင်သည်။ အဘယ်ကြောင့်ဆိုသော် သဘာ၀ အတိုင်းတည်ရှိနေသောကြောင့် ဖြစ်သည်။ U သည် ငါးများ၊ ဟင်းသီးဟင်းရွက်များတွင် မပါဝင်နိုင်ပေ။ U သည် ကျင်ငယ်ရေ နှင့် မစင်တို့တွင် လျှင်မြန်စွာ ဖြတ်သန်းပျော်ဝင်နိုင်သည်။ U ဒြပ်ပေါင်းသည် မြေဆီလွှာ နှင့်ရော အခြားဒြပ်ပေါင်းများ နှင့်ပါ ပေါင်းစပ်နိုင်ပြီး ၎င်းတို့သည် မြေဆီလွှာထဲတွင် နှစ်ပေါင်းများစွာ ရေမျက်နှာပြင်သို့ ရွေ့လျားခြင်းမရှိပဲ တည်ရှိနေနိုင်သည်။ များသောအားဖြင့် ဖော့စဖိတ်မြေဆီလွှာတွင် U ပါဝင်မှုပိုများသော်လည်း ပြဿနာ တစ်စုံတစ်ခု မဖြစ်နိုင်ပေ။ အဘယ်ကြောင့်ဆိုသော် ပါဝင်မှုသည် သန့်စင်သော မြေဆီလွှာအတွက် သာမန်ပါဝင်မှုထက် မပိုသောကြောင့်ဖြစ်သည်။ အပင်များသည် U ကို ၎င်းတို့အမြစ်များမှ စုပ်ယူသိုလှောင်ထားနိုင်သည်။ မုန်လာဥကဲ့သို့သော ဟင်းသီးဟင်းရွက်များ၏ အမြစ်များတွင် ပါဝင်သော U ပါဝင်မှုသည် သာမန် ပါဝင်မှုထက် ပိုများသည်။ထိုဟင်းသီးဟင်ရွက်များကို ဆေးကြောသန့်စင်လိုက်သောအခါ U သည် ဆက်လက်မတည်ရှိနိုင်တော့ပေ။

ယူရေနီယမ်

ယူရေနီယမ် သည် ရှားပါးသည့် သတ္တုဒြပ်စင်တစ်မျိုး ဖြစ် သည်။ ယင်း၏ ဓာတုသင်္ကေတ မှာ U ဖြစ်၍ အက်တမ် အမှတ်စဉ်မှာ ၉၂ ဖြစ်သည်။ ထိုဒြဗ်စင်သည် အက်တမ်စွမ်းအင် ထုတ်ယူရန်အတွက် အဓိကအခြေခံပစ္စည်းဖြစ်သည်။ ယူရေနီယမ်သည် ဖြူ၍ သံမဏိထက် အနည်းငယ်ပျော့သည်။ ရေ ထက် တစ်ဆယ့်ရှစ်ဆ ပိုလေးသည်။ ထိုဒြပ်စင်၏ အက်တမ် တစ်ခုသည် ဟိုက်ဒရိုဂျင်အက်တမ်တစ်ခုထက် ၂၃၈ ့ ဝ၇ ဆ ပို၍လေးသဖြင့် သတ္တုများတွင် အလေးဆုံးဖြစ်သည်။ ထိုသတ္တု ကို မည်သည့်အခါကမျှ စင်ကြယ်သည့် အခြေခံတွင် မတွေ့ခဲ့ ရချေ။ အဓိကအားဖြင့် ပစ်ချဗလင်းနှင့် ကာနိုတိုက်ခေါ် တွင်းထွက်များတွင် တွေ့ရသည်။ ယူရေနီယမ် အက်တမ် တစ်ခုကို ခွဲလိုက်သောအခါ ကရစ်ပတန်၊ စတြွရှိယမ်၊ တယ်လျူရီယမ်၊ အိုင်အိုဒင်း၊ ဇီနွန်နှင့် ဗေရီယမ် စသော လေးလံသည့် ဒြပ်စင်များအဖြစ်သို့ ကွဲထွက်သွားသည်။ POOP

ယူရေနီယမ်၌ အိုက်ဆိုတုပ်ခေါ် လုံးဝနီးပါး တူညီသည့် ဒြပ်စင်အများ ပါဝင်လျက်ရှိသည်။ ထိုအိုက်ဆိုတုပ်များကို ယင်းတို့၏ အလေးချိန်အလိုက် U ၂၃၄၊ U ၂၃၅နှင့် U ၂၃၈ ဟု ခေါ်ကြသည်။ သဘာဝအလျောက် ဖြစ်ပေါ်နေသော ယူရေနီယမ်တွင် U ၂၃၈သည် ၉၉.၃ ရာခိုင်နှုန်း ပါဝင်၍ U ၂၃၅သည် ၇ ရာခိုင်နှုန်း နှင့် U ၂၃၄ သည် .ဝဝ၆ ရာခိုင်နှုန်းမျှသာ ပါဝင်သည်။ U ၂၃၅ အိုက်ဆိုတုပ်ကို အက်တမ်စွမ်းအင် ထုတ် လုပ်ရာ၌ အသုံးပြုကြသည်။ U ၂၃၅ တစ်ပေါင်ကို လုံးဝကွဲထွက်စေခဲ့သော် တီ၊ အင်၊ တီ ခေါ် ပေါက်ကွဲ စေတတ်သော ပစ္စည်းတန်ချိန် ၉ဝဝဝ ခန့်နှင့် ညီမျှပေသည်။

ပစ်ချဗလင်းကို ကနေဒါနိုင်ငံ အနောက်မြောက်ဘက်ပိုင်းရှိ ဂရိတ်ဗဲယားလိပ်ဒေသနှင့် ကွန်ဂို(လီယိုပိုဗီး) နိုင်ငံတို့တွင် တူးဖော်ရရှိသည်။ ကာနိုတိုက်ကို ဩစတြေီးယားတိုက်တွင် လည်းကောင်း၊ အမေရိကန် ပြည်ထောင်စု ယူးတားပြည်နယ် အရှေ့ပိုင်းနှင့် ကော်လိုရားဒိုးပြည်နယ် အနောက်ပိုင်းတို့တွင် လည်းကောင်း၊ ပေါ်တူဂယ်နိုင်ငံနှင့် ဥရောပတိုက်ရှိ အခြား ဒေသများတွင်လည်းကောင်း တူးဖော်ရရှိနိုင်ပေသည်။

၁၇၈၉ ယူရေနီယမ်သတ္တု ရှိကြောင်းကို ဂျာမန်လူမျိုး ဓာတုဗေဒပညာရှင်တစ်ဦးက သိရှိခဲ့လေသည်။ ထိုပုဂ္ဂိုလ်သည် မာတင် ကလပ်ကရုတ်ဖြစ်၍ သူသည် ယူရေနီယမ် အောက် ဆိုက်တစ်မျိုးကို တွေ့ရှိခဲ့ရာ ယူရေးနပ်ဂြိုဟ်ကို ဂုဏ်ပြုသော အားဖြင့် အဆိုပါဒြပ်စင်ကို ယူရေနီယမ်ဟု အမည်ပေးခဲ့ လေသည်။ သို့ရာတွင် ၁၈၄၁ ခုနှစ်သို့ရောက်မှ ပြင်သစ်လူမျိုး ဓာတုဗေဒ ပညာရှင်တစ်ဦးဖြစ်သူ ယူဂျင်းပဲလီဂိုးဆိုသူက ယူရေနီယမ်သန့်သန့်ကို ခွဲထုတ်နိုင်ခဲ့ပေသည်။

ယူရေနီယမ်ကို တန်ဆာပလာများ ပြုလုပ်ရန် ဖြစ်သော သံမဏိ စပ်ရာတွင်လည်းကောင်း၊ အိုးခွက်များ အရောင်ခြယ် ရာ၊ ရောင်ပြောင်းတောက်ဖန်များ ပြုလုပ်ရာနှင့် အလင်းပေါက် ဆေးခြယ်ရာတို့တွင်လည်းကောင်း အသုံးပြုကြလေသည်။ သိပ္ပံ ပညာရှင်အချို့က ခရစ်နှစ် ၂ဝဝဝ လောက်သို့ ရောက်သော အခါ စီးပွားရေးစွမ်းအားအတွက် ကျောက်မီးသွေးကို သုံးမည့် အစား ယူရေနီယမ်ကို အသုံးပြုကြဖွယ်ရှိသည်ဟု ယုံကြည် ကြလေသည်။[4]

ကိုးကား

  1. Standard Atomic Weights 2013. Commission on Isotopic Abundances and Atomic Weights
  2. Morss, L.R.; Edelstein, N.M.; Fuger, J., eds. (2006)။ The Chemistry of the Actinide and Transactinide Elements (3rd ed.)။ Netherlands: Springer။ ISBN 9048131464
  3. Magurno, B.A.; Pearlstein, S, eds. (1981)။ Proceedings of the conference on nuclear data evaluation methods and procedures. BNL-NCS 51363, vol. II (PDF)။ Upton, NY (USA): Brookhaven National Lab.။ pp. 835 ff2014-08-06 တွင် ပြန်စစ်ပြီး
  4. မြန်မာ့စွယ်စုံကျမ်း၊ အတွဲ(၁၀)
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.